"Got You!": Automatic Vandalism Detection in Wikipedia with Web-based Shallow Syntactic-Semantic Modeling
نویسندگان
چکیده
Discriminating vandalism edits from non-vandalism edits in Wikipedia is a challenging task, as ill-intentioned edits can include a variety of content and be expressed in many different forms and styles. Previous studies are limited to rule-based methods and learning based on lexical features, lacking in linguistic analysis. In this paper, we propose a novel Web-based shallow syntacticsemantic modeling method, which utilizes Web search results as resource and trains topic-specific n-tag and syntactic n-gram language models to detect vandalism. By combining basic task-specific and lexical features, we have achieved high F-measures using logistic boosting and logistic model trees classifiers, surpassing the results reported by major Wikipedia vandalism detection systems.
منابع مشابه
Language of Vandalism: Improving Wikipedia Vandalism Detection via Stylometric Analysis
Community-based knowledge forums, such as Wikipedia, are susceptible to vandalism, i.e., ill-intentioned contributions that are detrimental to the quality of collective intelligence. Most previous work to date relies on shallow lexico-syntactic patterns and metadata to automatically detect vandalism in Wikipedia. In this paper, we explore more linguistically motivated approaches to vandalism de...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملAutomatic Extraction of Axioms from Wikipedia Using SPARQL
Building rich axiomatic ontologies automatically is a step towards the realization of the Semantic Web. In this paper, we describe an automatic approach to extract complex classes’ axioms from Wikipedia definitions based on recurring syntactic structures. The objective is to enrich DBpedia concept descriptions with formal definitions. We leverage RDF to build a sentence representation and SPARQ...
متن کاملAutomatic Vandalism Detection in Wikipedia
We present results of a new approach to detect destructive article revisions, so-called vandalism, in Wikipedia. Vandalism detection is a one-class classification problem, where vandalism edits are the target to be identified among all revisions. Interestingly, vandalism detection has not been addressed in the Information Retrieval literature by now. In this paper we discuss the characteristics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010